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PREFACE 

 
 
 
This text is intended to introduce the reader to a wide variety of credibility 
models and, in so doing, trace the historical development of the subject. 
The Bayesian approach to statistics is emphasized, revealing the author’s 
personal preference. The reader should be able to use this work as a 
foundation for understanding more sophisticated treatments in other 
works. For example, by seeing how various formulas are derived in the 
Bayesian paradigm, the reader should be able to understand other works 
describing the Bayesian approach to credibility. Another goal is to present 
the key assumptions underlying the various credibility models and to 
discuss the advantages and disadvantages of the various approaches.  
 
This work is intended to be largely self-contained. Although numerous 
references to the technical literature are provided, few are necessary for 
an understanding of the material discussed here. Rather, they are 
provided for those who would like to consult original sources and/or 
obtain some insight into the more advanced topics omitted from this 
introductory work. A large number of exercises are provided to help 
reinforce understanding of the material. Most of these have been taken 
from past examinations of the Casualty Actuarial Society. Complete 
solutions to all of the text exercises are available in a companion 
solutions manual.  
 
The emphasis in the first ten chapters of this introductory text is on basic 
statistical concepts.  
 
In Chapter 1, we (a) discuss two major statistical paradigms, (b) offer a 
glimpse into the nature of credibility, (c) introduce a simple practical 
problem later solved in Chapter 6 using credibility procedures, and (d) 
present a brief review of the key historical developments in credibility 
theory and its application to practical insurance problems. 
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In Chapter 2, we review the basic concepts of Bayesian analysis, and in 
Chapter 3 we discuss statistical loss functions. In Chapter 4, we use an 
example originally employed by Hewitt [1970] to illustrate the use of 
Bayesian concepts in the insurance ratemaking process. The key ideas 
are the use of the predictive distribution of aggregate claim amounts and 
the use of the (Bayesian) conditional mean to estimate pure premium 
amounts. 
 
In Chapter 5, we describe the limited fluctuation credibility model. This 
is primarily of historical interest, because it is not in wide use today. 
 
In Chapter 6, we present the development of an alternative credibility 
model proposed by Bühlmann [1967] as well as a special case of a more 
general model proposed by Bühlmann and Straub [1972]. The general 
Bühlmann-Straub model is presented in Chapter 7.  
 
In Chapter 8, we discuss an important general result of Ericson [1970]. It 
turns out that some specific results described in Mayerson [1964] are 
simply special cases of Ericson’s more general result. We also present an 
example which shows that the Bühlmann estimate does not always equal 
the corresponding Bayesian estimate. In Chapter 9, we use the statistical 
machinery developed to describe Ericson’s result to construct the 
predictive distribution of a more realistic two-stage model. Here the 
number of claims is assumed to follow a Poisson distribution and the 
claim amounts are based on an exponential distribution. 
 
In Chapter 10, we show that Bühlmann’s model produces least squares 
linear approximations to the Bayesian estimate of the pure premium. 
 
In the first ten chapters, we do not discuss important practical issues such 
as how to apply these procedures in dealing with issues likely to be 
encountered in real-life situations. Moreover, we do not attempt to 
discuss more sophisticated theoretical concepts such as multivariate 
extensions of the results presented here. These are all left for a more 
advanced treatment in later chapters and elsewhere. 
 
The three prior editions of this text have been in use since 1994.  Our 
goal over all of these years has been to make this text of practical use to 
the working actuary/actuarial student. To further this goal, we have 
added three new chapters to this fourth edition. Each of Chapters 11 
through 15 now deals in depth with a practical application of the 
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concepts developed earlier in the text. Chapter 11 discusses a Bayesian 
procedure for comparing two binomial proportions. Many researchers, 
including us, feel that this is far superior to the frequentist scheme of 
deciding whether or not to reject the null hypothesis that the two 
proportions are equal. Chapter 12 describes a procedure suggested by 
Fuhrer [1988] that has application to health insurance. Chapter 13 
summarizes work completed by Rosenberg and Farrell [2008] that 
describes a scheme for predicting the frequency and severity of 
hospitalization cost for a group of young children suffering from cystic 
fibrosis. Chapters 14 and 15 continue from earlier editions. In Chapter 
14, we use the concept of conjugate prior distributions to estimate 
probabilities arising from a data quality problem. In Chapter 15, we 
present an application of empirical Bayesian procedures to a problem in 
automobile insurance ratemaking. This is the application and solution 
proposed by Morris and van Slyke [1979]. 
 
The other major change in the fourth edition is in Chapter 1 where we 
have expanded the historical discussion surrounding the work of Bayes 
himself as well as Laplace. 
 
We assume here that the reader has a working knowledge of (1) the 
integration techniques normally taught during the second semester of a 
university course in calculus, (2) basic probability and statistics as taught 
during a two-semester university course having a calculus prerequisite, 
and (3) matrix manipulation and multiplication techniques. In particular 
regard to integral calculus, we assume that the reader can perform 
integration by parts and integration by change of variable (as done in 
Section 9.4). We also note that in a number places we have changed 
either the order of integration or summation. In general such 
manipulation requires the verification of one or more conditions to 
ensure that the sums actually converge. Because we are dealing here with 
probabilities that sum to one, we are never in danger of diverging to 
infinity. Hence, we will omit the verification step in this work. 
 
For many years, the topic of credibility theory has been included in the 
preliminary exams jointly sponsored by the Casualty Actuarial Society 
and the Society of Actuaries. All of the topics in that collection as well as 
the general learning objectives and the sample exam questions are 
thoroughly covered by this text. It has thus been an officially approved 
reference for this topic for most of those years. 
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CHAPTER 1 

 
INTRODUCTION AND HISTORY 

 
 

1.1  INTRODUCTION 
 

According to Rodermund [1989, page 3], “the concept of credibility has 
been the casualty actuaries’ most important and enduring contribution to 
casualty actuarial science.” 
 
In order to present a brief history of credibility, it will be helpful to begin by 
describing two major statistical paradigms and three major approaches to 
credibility. This will facilitate our description of the historical development. 
 
 
1.2  STATISTICAL PARADIGMS 

 

Credibility is an example of a statistical estimate. Statistical estimates are 
obtained through the use of statistical formulas or models which, in turn, 
are based on statistical approaches or paradigms. There are two major 
statistical paradigms of current interest, which are (a) the frequentist or 
classical paradigm, and (b) the Bayesian paradigm. 
 
In the frequentist paradigm, the probability of an event is based on its rela-
tive frequency. All prior and/or collateral information is ignored. Propo-
nents of the frequentist paradigm view it as being objective, because all 
attention is devoted to the observations (data). Some of the key constructs 
of the frequentist paradigm are the Neyman-Pearson Lemma, tests of statis-
tical hypotheses, confidence intervals, and unbiased estimates. 
  
In the Bayesian paradigm, probability is treated as a rational measure of 
belief. Thus, the Bayesian paradigm is based on personal or subjective 
probabilities and involves the use of Bayes’ theorem. Prior and/or collateral 
information is incorporated explicitly into the model via the prior distribu-
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tion and the likelihood. Some of the key constructs of the Bayesian para-
digm, in addition to Bayes’ theorem itself, are conditional probabilities, 
prior distributions, predictive distributions, and (posterior) odds ratios.  
 
 
1.3  WHAT IS CREDIBILITY?  

 

Suppose we have two collections of data, as illustrated in the following 
figure. 
 

Prior Observations  Current Observations 
# # # # # # # # 
# # # # # # # # 
# # # # # # # # 
# # # # # # # # 

 
FIGURE 1.1 

 
One collection consists of current observations, taken from the most re-
cent period of observation. The second collection has observations for 
one or more prior periods. The various approaches to credibility give us 
different “recipes” for combining the two collections of observations to 
obtain an overall estimate.  
 
Under some approaches to credibility, a compromise estimator, C, is cal-
culated from the relationship 
 
  (1 ) ,C ZR Z H= + −  (1.1) 
 
where R is the mean of the current observations (for example, the data), 
H is the prior mean (for example, an estimate based on the actuary’s 
prior data and/or opinion), and Z is the credibility factor, satisfying the 
condition 0 1.Z≤ ≤  Under these approaches, the credibility estimator of 
the quantity of interest is derived as a linear compromise between the 
current observations and the actuary’s prior opinion. Graphically we see 
that the compromise estimator, C, is somewhere on the line segment be-
tween R and H, as shown in Figure 1.2.  
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R 

C 

H 

 
 
 
 
 
 
 

 
FIGURE 1.2 

 
The symbol Z denotes the weight assigned to the (current) data and 
(1 )Z−  the weight assigned to the prior data. This formulation of Equa-
tion (1.1), which includes the concept of prior data, is in the spirit of the 
Bayesian paradigm. As an insurance example, a new insurance rate, C, is 
derived as a weighted average of an old insurance rate, H, and an insur-
ance rate, R, whose calculation is based solely on observations from a 
recent period. An alternative interpretation of Equation (1.1) is to let C 
be the insurance rate for a particular class of business, to let R be the in-
surance rate whose calculation is based solely on the recent experience of 
that class, and to let H be the insurance rate whose computation takes 
into account the experience of all classes combined. 
  
To illustrate the types of practical problems that are addressed by credi-
bility theory, we present here the statement of a problem typical of those 
solved in this text. Because we have not yet developed the technical ma-
chinery required to solve such a problem, we defer its solution until Sec-
tion 6.6.1 (see Example 6.5). 
 
EXAMPLE 1.1  

 
An insurance company has two policies of group workers’ compensation. 
The aggregate claim amounts in millions of dollars for the first three policy 
years are summarized in the table below. Estimate the aggregate claim 
amount during the fourth policy year for each of the two group policies.  
 

Aggregate Claim Amounts 
Group 
Policy 

Policy Year 
1 2 3 

1 5 8 11 
2 11 13 12 
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Over the years there have been three major approaches to credibility: 
limited fluctuation, greatest accuracy, and Bayesian. The first two ap-
proaches fall under the frequentist paradigm, as neither entails the use of 
Bayes’ theorem. Moreover, neither approach explicitly requires prior 
information (i.e., a formal prior probability distribution) in order to com-
pute either the credibility factor, Z, or the estimate, C. The most well-
developed approach to greatest accuracy credibility is least squares cre-
dibility. Because this approach was popularized by Hans Bühlmann, it is 
referred to in this text as Bühlmann’s approach. 
 
 
1.4 THREE APPROACHES TO CREDIBILITY 

 

The limited fluctuation and Bühlmann approaches both involve the ex-
plicit calculation of the credibility factor, Z, and the use of Equation (1.1) 
to obtain the compromise estimator, C. On the other hand, the Bayesian 
approach requires neither the direct calculation of Z nor the use of Equa-
tion (1.1). 
 
1.4.1 LIMITED FLUCTUATION APPROACH 

 
Mowbray [1914] described a limited fluctuation approach for deriving 
the number of exposures required for full credibility, the case where 

1.Z =  Perryman [1932] proposed a limited fluctuation approach to par-
tial credibility problems, those for which 1.Z <  More modern treatments 
of the limited fluctuation approach to both full credibility and partial cre-
dibility are found in Longley-Cook [1962] and in Chapter 8 of Hossack, 
Pollard, and Zehnwirth [1983]. Outside of North America this approach 
is sometimes called “American credibility.” 
 
1.4.2 BÜHLMANN’S APPROACH  
Bühlmann’s approach, as described in this text, is based on Bühlmann 
[1967], which had its origins in a paper by Bailey [1942 and 1943]. 
Bühlmann and Straub [1972] describe an important generalization of the 
1967 Bühlmann work. 
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1.5  BAYESIAN APPROACH TO CREDIBILITY 
 

1.5.1  BAYESIAN STATISTICAL INFERENCE –  
 THE EARLY YEARS  
The Bayesian approach goes all the way back to the Reverend Thomas 
Bayes who was born in London, England around 1702. According to 
Stigler [1986], “Bayes was an ordained Nonconformist minister in 
Turnbridge Wells (about 35 miles southeast of London).” Although 
Bayes was elected a fellow of the Royal Society in 1742, his major work 
was not published until 1764, almost three years after his death. For a 
long time, his membership in the Royal Society was something of a mys-
tery. Recently-discovered letters, however, now indicate that he did in-
deed have private correspondence with the other leading intellectuals of 
his era in London. When Bayes died in 1761, he left £100 and his scien-
tific papers to his friend, Richard Price. After adding an introduction and 
an appendix, Price presented Bayes’ essay “Toward Solving a Problem 
in the Doctrine of Chance” to the Royal Society.  
 
The famous French astronomer, probabilist and mathematician Pierre 
Simon Laplace, who lived from 1749-1827, both championed and ex-
tended Bayes’ work. In his text entitled Essai philosophie sur les proba-
bilities (Philosophical Essay on Probabilities), Laplace described a ma-
thematical framework for conducting statistical inference. This extended 
the work of Bayes and constituted the essence of Bayesian statistical in-
ference. Laplace took this work seriously as the following passage from 
the beginning of his Essay indicates:  
 

“Here I will present … the principles and general results of the 
theory, applying them to the most important questions of life, which 
are indeed, for the most part, only questions of probability.” 

 
Inverse Probabilities and Statistical Inference 
Bayes’ theorem has practical application in many fields. Kanellos [2003] 
presents one in a recent article about the application of Bayes’ theorem to 
data searches entitled “18th Century Theory is New Force in Computing.” 
Bayes’ Theorem is important to actuaries because it enables them to per-
form statistical inference by computing inverse probabilities. 
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What exactly do we mean by “inverse probabilities”? We use the term 
“inverse” because we are inferring backwards from results (or effects) to 
causes. Let’s look at some simple examples to examine this further. 
 
A typical probability problem might be stated as follows: I have a stan-
dard die with six sides numbered from “one” through “six” and throw the 
die three times. What is the probability that the result of each of these 
three tosses of the die will be a “six”? 
  
Now, I might have a second (non-standard) die with three sides num-
bered “1” and three sides numbered “six.” Again I can ask the same 
question: What is the probability that the result of each of these three 
tosses of the die will be a “six”?  
 
The idea behind inverse probabilities is to turn the question around. 
Here, we might observe that the results of three throws of a die were all 
“sixes.” We then ask the question: What is the probability that we threw 
the standard die (as opposed to the non-standard die), given these results?  
 
1.5.2 WHITNEY’S VIEW OF CREDIBILITY  
Whitney [1918] stated that the credibility factor, Z, needed to be of the 
form 

nZ n k=
+

 

 
where n represents “earned premiums” and k is a constant to be deter-
mined. The problem was how to determine k. Whitney noted that, “In 
practice k must be determined by judgment.”1 Whitney also noted that, 
“The detailed solution to this problem depends upon the use of inverse 
probabilities” via Bayes’ Theorem.2

 
 

Predictive Distributions 

In insurance work, we typically experience a number of claims or an ag-
gregate amount of losses in one or more prior observation periods. The 
questions we want to answer are:  
 

                                                 
1 See Whitney [1918, page 289]. 
2 See Whitney [1918, page 277]. 



INTRODUCTION AND HISTORY    7 
 

(1) Given such results, how many claims will we experience during the 
next observation period? 

 
(2) Given such results, what will be the aggregate loss amount during 

the next observation period? 
 
Using Bayes’ Theorem, we can construct an entire probability distribution 
for such future claim frequencies or loss amounts. Probability distributions 
of this type are usually called predictive distributions. Predictive distribu-
tions give the actuary much more information than would an average or 
other summary statistic. A predictive distribution provides the actuary with 
much more information than just the expected aggregate amount of losses 
in the next period. It provides the actuary with a complete profile of the tail 
of the probability distribution of aggregate losses for use in a “value-at-
risk” analysis. Thus, predictive distributions can provide the actuary and her 
client an important tool with which to make business decisions under uncer-
tainty. 
 
1.5.3 BAYESIAN STATISTICAL INFERENCE  
 AND MODERN TIMES  
Perhaps, in part, because the frequentist paradigm of statistics dominated 
the statistical community during the first half of the twentieth century, it 
remained for Bailey [1950] to rediscover and advance Whitney’s ideas. 
During the second half of the twentieth century, Bayesian methods 
gained increased adherents. Two of the earliest influential books on 
Bayesian statistics were Savage [1954] and Raiffa and Schlaifer [1961]. 
Mayerson [1965] brought together the statistical developments in Baye-
sian statistical inference and the actuary’s credibility problem, reexamin-
ing Bailey’s results using the concept of a “conjugate prior distribution” 
and other more modern notation and terminology. Ericson [1970] and 
Jewell [1974] generalized Mayerson’s results. Whereas Whitney and 
Bailey had considered only the distribution of the number of claims, 
Mayerson, Jones, and Bowers [1968] and Hewitt [1971] considered both 
the distribution of the number of claims and the distribution of the 
amount of those claims. Hewitt used some clever, artificial examples to 
illustrate the use of a full Bayesian approach to insurance ratemaking. It 
remained for Klugman [1987 and 1992], who had the advantage of mod-
ern computing equipment, to extend Hewitt’s ideas and actually apply 
them to a major practical insurance-ratemaking problem.  
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1.5.4 BAYESIAN STATISTICAL INFERENCE 
 AND MODERN COMPUTING 

  
With the increased power of 21st-century computing equipment, ad-
vances in statistical algorithms (e.g., the EM algorithm and Markov 
chain Monte Carlo methods) that implement the Bayesian approach, and 
widely-available software that performs Bayesian inference (i.e., Win-
BUGS3

 

), a wider class of problems is becoming susceptible to solution 
via the Bayesian approach.  

 
1.6  EXPLORATORY DATA ANALYSIS 

 

Some of the followers of John Tukey [1977] consider “exploratory data 
analysis” to be another distinct approach to data analysis4

 

.  While it is not 
the intention here to enter this philosophical discussion, it is often 
important to do substantial exploratory data analysis prior to constructing 
formal models, doing statistical inference, or carrying out other types of 
more involved statistical procedures. There are several reasons for doing 
this. First, substantial insight can often be gained by using simple 
approaches. In some situations, especially when the actuary thoroughly 
understands the subject matter, exploratory data analysis may yield a 
complete solution. As an example, we consider the following table that 
summarizes the experience of some mortgages insured by the Federal 
Housing Administration (FHA) – a component of the U. S. Department of 
Housing and Urban Development. 

                                                 
3 The BUGS (Bayesian inference Using Gibbs Sampling) Project (begun by the MRC 
Biostatistics unit at Imperial College, London) is concerned with the development of 
flexible software for Bayesian analysis of complex statistical models using Markov chain 
Monte Carlo methods. The “Win” prefix refers to Microsoft’s Windows operating sys-
tem. For more details about BUGS, actuaries should read David Scollnik [2001]: “Actu-
arial Modeling with MCMC and BUGS.” 
4 In addition to Tukey’s seminal reference work, cited above, other (perhaps more re-
fined) references on exploratory data analysis include Mosteller and Tukey [1977] and 
Velleman and Hoaglin [1981]. 



INTRODUCTION AND HISTORY    9 
 

EXAMPLE 1.2  

Claim Rates5

 Single-family Mortgages Originated during 1981 
 through July 1, 1989 on FHA-insured 

Owner-Occupied Only 

Loan-to-value 
ratio 

Mortgage Amount  (In Dollars) 

< 25,000 25,001- 
35,000 

35,001- 
50,000 

50,001- 
60,000 

Over 
60,000 Overall 

≤ 80.0% 8.38% 6.88% 6.74% 10.01% 6.94% 7.63% 
80.1 – 85.0 20.43 12.47 11.92 11.68 8.20 11.39 
85.1 - 90.0 24.33 17.43 12.59 11.76 11.43 13.69 
90.1 – 95.0 27.70 23.53 18.53 19.10 17.46 19.94 
95.1 – 97.0 33.48 32.42 26.76 25.88 23.51 27.77 
97.1 – 100.0 42.86 52.05 40.99 31.09 18.42 42.13 

 
Because we know from a companion table that there are only a small 
number of mortgages whose loan-to-value ratio is in the 97.1 – 100.0% 
category, we ignore that line of the table. We find a strong pattern 
indicating that the claim rate goes down as (1) the mortgage amount goes 
up and (2) as the loan-to-value ratio goes down. In particular, we note 
that in the roughly eight years covered by the table, more than 27% of 
the loans having a loan-to-value ratio in excess of 95% resulted in an 
insurance claim. The message of this table is clear. If you originate 
mortgages with little or no down-payment, the proportion of mortgages 
ending up in foreclosure may be substantial. It does not come as a 
surprise then that, after lenders originated a large number of mortgages 
with little or no down-payment during the period 2003-2007, a 
substantial number of these mortgages ended up in foreclosure. Should it 
come as a surprise that the housing “bubble” burst? 
 
Second, exploratory data analysis often gives useful insight into the 
process generating the data. Such insight could be critical to the selection 
of a good model. 

                                                 
5 Claim rate is defined as the proportion of claims received for a given origination year, on 
single-family mortgages insured by FHA, i.e.,  

.number of claimsclaim rate
number of mortgages originated

=  
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Too often large databases/data warehouses have material deficiencies 
involving erroneous or missing data elements, missing records, and/or 
duplicate records. Health insurance companies are concerned with avoiding 
duplicate claim payments to policyholders. Life insurance companies are 
concerned with (1) making payments to deceased annuitants and (2) failing 
to pay beneficiaries of life insurance policyholders because they are not 
aware that the policyholder has died. Hansen and Wang [1991] describe 
major deficiencies in a wide range of databases. Thus, the existence of 
material errors is not an unusual occurrence. Exploratory data analyses can 
often reveal such errors in the database under study. For a more complete 
discussion of how to prevent, identify, and correct faulty data, the interested 
reader should see Herzog, Scheuren, and Winkler [2007]. 
 
 
1.7  RECENT APPLICATIONS 

 

We conclude this chapter by citing some recent applications of credibility 
theory to actuarial problems. Jewell [1989 and 1990] shows how to use 
Bayesian procedures to calculate incurred but not yet reported reserve re-
quirements. Russo [1995] extends the work of Jewell. In order to estimate 
insurance reserves, Russo develops continuous time models of claim re-
porting and payment processes. In so doing, he employs both the Bayesian 
paradigm and a multistate model of the incurred claims process. 
  
Klugman [1987] uses a full Bayesian approach to analyze actual data on 
worker’s compensation insurance. Klugman investigates two problems. 
First, he calculates the joint posterior distribution of the relative frequen-
cy of claims in each of 133 rating groups. He employs three distinct prior 
distributions and shows that the results are virtually identical in all three 
instances. Second, Klugman analyzes the loss ratio for three years of ex-
perience in 319 rating classes in Michigan. He uses these data to con-
struct prediction intervals for future observations (i.e., the fourth year). 
He then compares his predictions to the actual results. 
 
The Bayesian paradigm has been used to graduate (or smooth) various 
types of mortality data. London [1985], building on the pioneering work 
of Kimeldorf and Jones [1967], provides a general description of this 
method. London also provides a Bayesian rationale for the historically 
popular Whittaker graduation method. A specific application of Bayesian 
graduation is found in Herzog [1983]. 
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Young [1997, 1998] has done some research on credibility and spline 
functions. Her work enables the actuary to estimate future claims as a 
function of a statistic other than the sample mean. For example, Young 
[1998] argues that the use of a regression model with the predictor varia-
ble being a function of the sample geometric mean may lead to a more 
accurate estimator, i.e., one whose squared error loss is reduced. 
 
As discussed in Chapter 8 of this text, Ericson [1970] and Jewell [1974] 
have shown that the Bühlmann estimate is equal to the Bayesian estimate 
of the pure premium when the claim distribution belongs to the exponen-
tial family of probability distributions and the conjugate prior is em-
ployed. Landsman and Makov [1998a] have extended this result to claim 
distributions belonging to the “exponential dispersion family” of distri-
butions. Landsman and Makov [1998b] suggest a totally new approach to 
deal with the situation in which the claim distribution is not a member of 
either of the two previously-mentioned families of distributions. 
 
Frees, et al., [1999] and Frees, et al., [2001] delineate the relationship 
between (1) credibility models and (2) parametric statistical models used 
for panel (longitudinal) data analysis. 
 
Prior to the advent of Markov Chain Monte Carlo (MCMC) numerical 
methods, it was only feasible to implement a full Bayesian approach for 
a limited class of models. Scollnik [2001] shows how to implement 
Bayesian methods in actuarial models using the BUGS software package. 
Fellingham, Tolley, and Herzog [2005] also use BUGS to construct a 
Bayesian hierarchical model in order to estimate health insurance claim 
costs. Finally, Rosenberg and Farrell [2008] use version 1.4 of Win-
BUGS to construct a Bayesian statistical model in order to predict the 
incident and cost of hospitalization for a group of children with cystic 
fibrosis. 
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1.8  EXERCISES 
 

1.1  Introduction 
 
1-1 According to Rodermund, what has been the casualty actuaries’ 

most important and enduring contribution to casualty actuarial 
science? 

 
1.2  Statistical Paradigms 
 
1-2 Name the two major statistical paradigms of current interest. 
 

1.3  What Is Credibility? 
 
1-3 Using Equation (1.1), determine the realization of the compromise 

estimator C, given that (i) the mean of the current observations is 
10, (ii) the prior mean is 6, and (iii) the credibility factor is .25. 

 
1-4 Using Equation (1.1), determine the insurance rate, C, for a partic-

ular class of business given that (i) the insurance rate calculated 
strictly from the experience data of that class of business is $100, 
(ii) the insurance rate for all classes combined is $200, and (iii) the 
credibility factor for the class is .40. 

 
1.4  Three Approaches to Credibility 
 
1-5 List the three major approaches to credibility. 
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CHAPTER 2 

MATHEMATICAL PRELIMINARIES

In this chapter we review some basic probability and statistics concepts. 
In Section 2.1, we first define the term “conditional probability” which 
forms the basis for Bayes’ theorem. Bayes’ theorem, in turn, is the foun-
dation of the Bayesian paradigm, a useful tool for solving a wide range 
of practical problems. After the statement and proof of Bayes’ theorem, 
we present the Theorem of Total Probability, which is often useful in 
applying Bayes’ theorem. In Section 2.2 we consider some examples of 
the use of Bayes’ theorem. The first example is based on the target-
shooting example of Philbrick [1981]; the second is taken from Hewitt 
[1970]. Prior and posterior probabilities are defined in Section 2.3, and 
the concepts of conditional expectation and unconditional expectation are 
reviewed in Sections 2.4 and 2.5, respectively. Hewitt’s example is used 
to illustrate the results of Sections 2.4 and 2.5.  

Exercises 2-8, 2-9, 2-14, and 2-15 deal with the estimation of the number 
of future insurance claims, a key component of an insurer’s future liabili-
ty of loss. (The provision for such liability is called the loss reserve, and 
the process of estimating the liability is called loss reserving or loss de-
velopment.) These four exercises are based on material discussed by 
Brosius [1993]. 

2.1  BAYES’ THEOREM 

Definition 2.1 
Let A and B represent events such that [ ] 0.P B >  Then the 
conditional probability of A given B is defined to be 

[ and ][ | ] .[ ]
P A BP A B P B= (2.1) 
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The following result is named after the Reverend Thomas Bayes, who 
lived during the eighteenth century. 

Theorem 2.1 
(Bayes’ Theorem) 

Let A and B be events such that [ ] 0.P B >  Then 

[ | ] [ ][ | ] .[ ]
P B A P AP A B P B

⋅=  (2.2) 

Proof 

By repeated application of the definition of conditional proba-
bility, we have 

[ and ][ | ] ,[ ]
P A BP B A P A=

so that [ and ] [ | ] [ ].P A B P B A P A= ⋅ Then 

[ and ] [ | ] [ ][ | ] .[ ] [ ]
P A B P B A P AP A B P B P B

⋅= =

Since the value of [ ]P B  does not depend on A, we can consider [ | ]P A B  
to be the product of a constant, c, and the two functions of A, writing  

[ | ] [ | ] [ ].P A B c P B A P A= ⋅ ⋅  (2.2a) 

Alternatively we can consider [ | ]P A B to be proportional to the product 
of the two functions of A, writing 

[ | ] [ | ] [ ],P A B P B A P A∝ ⋅ (2.2b) 

a construct frequently employed in applications appearing later in the text. 

The next theorem is often useful in the application of Bayes’ theorem. 
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Theorem 2.2 
(Theorem of Total Probability) 

Let 1 2, ,...A A  represent a countable collection of mutually exclu-
sive and exhaustive events, so that 

fori jA A i j= ∅ ≠

and 

1
i

i
A

∞

=

= Ω


where Ω  denotes the entire sample space. Then 

1
[ ] [ | ] [ ].i i

i
P B P B A P A

∞

=
= ⋅∑  (2.3) 

Proof 

We have 

1 1

1 1

[ ] [ and ]

and ( and )

[ and ] [ | ] [ ].

i i
i i

i i i
i i

P B P B

P B A P B A

P B A P B A P A

∞ ∞

= =

∞ ∞

= =

= Ω

   
= =   

   

= = ⋅∑ ∑

 

The Theorem of Total Probability is widely used in this text. Its first ap-
plication is found in Example 2.2. 

2.2  EXAMPLES OF THE USE OF BAYES’ THEOREM 

Under the notation of Chapter 1, the Bayesian approach does not neces-
sarily produce a linear estimate of the true value. In fact, the Bayesian 
estimate, B, does not even have to be on the line segment joining R and 
H, as shown in the following figure. 
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FIGURE 2.1 
 
This is illustrated in the following example. 
 
EXAMPLE 2.1   
Consider an abbreviated form of the “target-shooting” example of Phil-
brick [1981], where one of two shooters, X or Y, is chosen at random 
(i.e., with probability ½).  The shots of each shooter are uniformly distri-
buted over two non-overlapping circular targets, illustrated in Figure 
2.2a. 
 

 
FIGURE 2.2a 

 
The (overall) mean of the two targets is G, the point half-way between 
the centers of the two circles. (In the terminology of physics, G is known 
as the center of gravity.) A single shot is fired and observed to be at 
point S on target X, as shown in Figure 2.2b. What is the Bayesian esti-
mate of the next shot?  
 

 
FIGURE 2.2b 

X
S



 G  Y  

X  G  Y  

R 

B  H 
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SOLUTION 
The answer is the center of target X. The reason1

 

 is that the se-
lected shooter must be shooter X. Since the prior estimate is the 
point G, half-way between the centers of the two targets, the 
Bayesian point estimate of the location of the second shot is not 
on the line segment from G to the location, S, of the first shot.  

The following example of the use of Bayes’ theorem is taken from the 
important paper of Hewitt [1970]. 
 
EXAMPLE 2.2   
A die is selected at random (i.e., with probability ½) from a pair of “hon-
est” dice. It is known that one die, 1a , has one marked face and five un-
marked faces and the other die, 2a , has three marked faces and three 
unmarked faces. Let A denote the random variable representing the selec-
tion of the die. Let u denote the outcome if a toss of the die produces an 
unmarked face, and let m denote the outcome if the result is a marked 
face. Then 
 

1A  denotes the event 1,A a=  the selection of the die with one 
marked face and five unmarked faces, and 

2A  denotes the event 2 ,A a=  the selection of the die with three 
marked faces and three unmarked faces.  

 
Let iT  denote the random variable representing the result of the thi  toss 
of the selected die, for 1,2, .i =   Then 
 

iU  denotes the event ,iT u=  the result of having an unmarked 
face showing on the thi  toss for 1,2, ,i =  and 

iM  denotes the event ,iT m=  the result of having a marked face 
showing on the thi  toss for 1,2, .i =    

                                                 
1 While the “reason” is probably intuitive and therefore comfortable, it is not complete.  
To make the reasoning complete, we must employ a “loss function”  (see Chapter 3).   In 
particular, if a squared error loss function is chosen, then the center is the “best” estimate 
because it minimizes the sum of the squared deviations.  The reader may wish to return to 
this example after reading Chapter 3. 
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Note that A and iT  denote random variables, whereas 1 2, , ,iA A U and iM  
denote events. In calling each die “honest” we simply mean that 
 

   [ ]1
5| 6iP U A =  (2.4a) 

and 

   [ ]2
3| 6iP U A =  (2.4b)  

 
Calculate the value of 1 1[ | ],P A U  the probability that the die with only 
one marked face has been drawn, given that a die was selected at ran-
dom, tossed once, and resulted in an unmarked face.  
 
SOLUTION 

By Bayes’ theorem we have 

 

 [ ] [ ]
[ ]

[ ] [ ]
[ ]

1 1 1 1 1
1 1

1 1

and |
| .

P A U P U A P A
P A U

P U P U
⋅

= =  

 
From Equation (2.4a), we have 1 1

5
6[ | ] .P U A =  Because each die 

is chosen with probability 1
2 ,  we have 1

1
2[ ] .P A =  The value of 

1[ ]P U  is computed using the Theorem of Total Probability as 

 

 

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

( )( ) ( )( )

1 1 1 2 1

1 1 1 1 2 2

and and

| |

5 1 3 1 2 .6 2 6 2 3

P U P A U P A U

P U A P A P U A P A

= +

= ⋅ + ⋅

= + =

 

 
Substituting into the Bayes’ theorem equation, we obtain the 
result 

  [ ]
( )( )

1 1

5 1
6 2

2
3

5| .8P A U = =   
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2.3 PRIOR AND POSTERIOR PROBABILITIES 
 

In Example 2.2, we assumed that 1
2  was our initial or prior (estimate of 

the) probability of event 1.A  The word “prior” relates to the fact that 
this probability was assessed before the experiment of tossing the die 
was performed. After observing the result of the first toss to be an un-
marked face, we revised our estimate of the probability of 1A  to be 5

8 .  In 

symbols, we now have 1 1
5
8[ | ] .P A U =  Thus our final or posterior (esti-

mate of the) probability of 1A  given 1U  is 5
8 .  This modification of our 

prior probability estimate based on recently observed data is the essence 
of Bayesian statistics.2

 

 Such modifications are frequently required in or-
der to solve practical actuarial problems such as the calculation of insur-
ance premium rates. 

In terms of the probability distribution of the parameter A, our initial 
assessment was 1

1
2[ ]P A a= = and 2

1
2[ ] .P A a= =  Under the Bayesian 

paradigm, parameters are typically considered to be random variables. 
After observing the result of the first toss to be an unmarked face, we 
revised our assessment of the probability distribution of the parameter A 
to be 1 1

5
8[ | ]P A a T u= = =  and 2 1

3
8[ | ] .P A a T u= = =  In general, the entire 

distribution of the prior probabilities of a parameter is called its prior 
probability distribution, and the entire distribution of posterior prob-
abilities is called its posterior probability distribution. Prior and post-
erior density functions are similarly defined. 
 
 
2.4 CONDITIONAL EXPECTATION 

 

We now move on to a concept that is most useful in calculating insur-
ance premium rates. 

                                                 
2 Edwards, Lindman, and Savage (1963) summarize the Bayesian view of statistics as fol-
lows:   

 “Probability is orderly opinion, and inference from data is nothing other 
than the revision of such opinion in the light of relevant new information.” 
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Definition 2.2 

Let X be a discrete random variable such that 1 2, ,x x   are the 
only values that X takes on with positive probability. Then the 
expectation of X, denoted [ ],E X  is given by  

           
1

[ ] [ ].i i
i

E X x P X x
∞

=
= ⋅ =∑  (2.5)  

 Definition 2.3 

Using the notation of Definition 2.2, we define the conditional 
expectation of X given that event 1A  has occurred, denoted 
by 1[ | ],E X A  as  

           1 1
1

[ | ] [ | ].i i
i

E X A x P X x A
∞

=
= ⋅ =∑  (2.6)  

 
To illustrate the concept of conditional expectation, we consider the fol-
lowing example, also based on Hewitt [1970]. 
 
EXAMPLE 2.3   

A spinner is selected at random (i.e., with probability 1
2 ) from a pair of 

spinners. It is known that (a) one spinner, 1,b  has six equally likely sectors, 
five of which are marked “two” and one of which is marked “fourteen,” and 
(b) the other spinner, 2 ,b  has six equally likely sectors, three of which are 
marked “two” and three of which are marked “fourteen.” Let B denote the 
random variable representing the selection of the spinner. Also let 
 

1B  denote the event 1,B b=  the selection of the spinner with 
five “two’s” and one “fourteen,” and 

2B  denote the event 2 ,B b=  the selection of the spinner with 
three “two’s” and three “fourteen’s.”  

 
Let iS  denote the random variable representing the result of the thi  spin, 
for 1,2, .i =   Calculate (a) the value of 1 1[ | ],E S B  the conditional ex-
pectation of the value of a single spin, given that the spinner with one 
“fourteen” has been selected, and (b) the value of 1 2[ | ].E S B  
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SOLUTION 
(a) By the definition of conditional expectation (Definition 2.3) 

we have 

[ ] [ ] [ ]

( ) ( )
1 1 1 1 1 1| 2 2 | 14 14 |

5 12 14 4.6 6

E S B P S B P S B= ⋅ = + ⋅ =

= + =
 

(b) In a similar manner we can find 

 [ ] ( ) ( )1 2
3 3| 2 14 8.6 6E S B = + =   

 
The following example further illustrates the use of Bayes’ theorem.  
 
EXAMPLE 2.4   
Calculate the value of 1 1[ | 2].P B S =  
 
SOLUTION 

As in Example 2.2, from Bayes’ theorem we have 
 

[ ] [ ] [ ]
[ ]

1 1 1
1 1

1

2 |
| 2 ,

2
P S B P B

P B S
P S
= ⋅

= =
=

 

 
where 1 1

5
6[ 2 | ]P S B= =  and 1

1
2[ ] ,P B =  and, from Theorem 2.2, 

we find  
 

 
[ ] [ ] [ ] [ ] [ ]

( )( ) ( )( )
1 1 1 1 1 2 22 2 | 2 |

5 1 1 1 2 .6 2 2 2 3

P S P S B P B P S B P B= = = ⋅ + = ⋅

= + =
 

 
Then we can calculate 

  [ ]
( )( )

1 1

5 1
6 2

2
3

5| 2 .8P B S = = =   

(The reader is encouraged to calculate other such probabilities.) 
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2.5 UNCONDITIONAL EXPECTATION 
 

The following theorem is useful in calculating pure premium estimates, 
as will be demonstrated in Chapter 4. 
 

Theorem 2.3 
 

Let 1 2, ,A A   represent a countable collection of mutually exclu-
sive and exhaustive events, and let X be a discrete random varia-
ble for which [ ]E X exists. Then 

 [ ] [ ]
1

[ ] | .i i
i

E X E X A P A
∞

=
= ⋅∑  (2.7) 

Proof 
Because X is a discrete random variable, we have from Defini-
tion 2.2 

 
1

[ ] [ ].j j
j

E X x P X x
∞

=
= ⋅ =∑   (2.5) 

By the Theorem of Total Probability we have 

   [ ]
1

[ ] | [ ].j j i i
i

P X x P X x A P A
∞

=
= = = ⋅∑  

Then we can rewrite Equation (2.5) as 

   [ ]
1 1

[ ] | [ ].j j i i
j i

E X x P X x A P A
∞ ∞

= =
= = ⋅∑ ∑  

Interchanging the order of summation we obtain  

   
[ ]

1 1

1 1

[ ] [ | ] [ ]

[ ] | .

j i i i
i j

i j j i
i j

E X x P X x A P A

P A x P X x A

∞ ∞

= =
∞ ∞

= =

= ⋅ = ⋅

= ⋅ ⋅ =

∑∑

∑ ∑
 

By the definition of conditional expectation (Definition 2.3), the 
second summation is [ | ],iE X A  so the last expression may be 
written as 

   
1

[ ] [ ] [ | ].i i
i

E X P A E X A
∞

=
= ⋅∑  
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EXAMPLE 2.5   

Calculate the expected value of the random variable 1S  defined in Ex-
ample 2.3.  
 
SOLUTION 

Using Theorem 2.3 and the results of Example 2.3, we obtain 

 ( ) ( )2

1 1
1

1 1[ ] [ ] [ | ] (4) (8) 6.2 2i i
i

E S P B E S B
=

= ⋅ = + =∑   

Some more sophisticated and useful applications of Theorem 2.3 will be 
discussed in Chapter 4. 
 

Theorem 2.4 

Let X and Y be discrete random variables and let ( )g Y  be a func-
tion of Y for which [ ( )]E g Y  exists. Then we may write 

   [ ] [ ] [ ]( ) ( ) ( ) | ,Y X YE g Y E g Y E E g Y X = =    (2.8) 

where XE  denotes expectation over the sample space of X. 

Proof 
By definition of ,YE  we have  [ ] [ ]( ) ( ) .YE g Y E g Y=  

Since Y is a discrete random variable, then 

   

[ ]

[ ]

1

1 1

1 1

1

( ) ( ) [ ]

( ) [ | ] [ ]

[ ] ( ) [ | ]

[ ] ( ) | .

i

i j

j i

j

i i

i i j j

j i i j

j Y j

E g Y g y P Y y

g y P Y y X x P X x

P X x g y P Y y X x

P X x E g Y X x

∞

=
∞ ∞

= =
∞ ∞

= =
∞

=

= ⋅ =

= ⋅ = = ⋅ =

= = ⋅ ⋅ = =

= = ⋅ =

∑

∑ ∑

∑ ∑

∑

 

The final expression above is the expectation, with respect to X, 
of the conditional expectation, with respect to Y, of the random 
variable ( ),g Y  given that .jX x=  Thus it can be rewritten as 

   [ ] [ ]( ) ( ) | .X YE g Y E E g Y X =    



24    CHAPTER  2 
 

We note that in the last equation the term ( ) |YE g Y X    is a function 
only of X. 
 
EXAMPLE 2.6  

 

Use the result of Theorem 2.4 to compute 2
1 .E S    

 
SOLUTION 

Recall that B is the random variable representing the result of se-
lecting either spinner 1b  or 2b  with equal probability. Then we 
have  
 

( ) ( ) ( ) ( )

1

1 1

2 2
1 1

2 2
1 1 1 2

2 2 2 2

|

1 1| |2 2

1 5 1 1 1 1(2) (14) (2) (14)2 6 6 2 2 2

1 1(36) (100) 68.2 2

B S

S S

E S E E S B

E S B b E S B b

    =    

   = ⋅ = + ⋅ =   

  = + + +     

= + =

 

 
 

2.6  EXERCISES 
 

2.1  Bayes’ Theorem  
2.2  Examples of the Use of Bayes’ Theorem 
 
2-1 What is [ ]2 1| ?P A U  
 
 
2-2 Let the conditions be as in Example 2.2. As before we select a die 

at random, but now toss it twice rather than just once. What is the 
probability that the die with only one marked face has been drawn, 
if both tosses result in unmarked faces? (Symbolically this is given 
by [ ]1 1 2| and .)P A U U  
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2-3 Let the conditions be as in Example 2.2, except that 1
5
8[ ]P A =  and 

2
3
8[ ] .P A =  What is [ ]1 2|P A U  in this case? 

 
2-4 A box contains 4 red balls and 6 white balls. A sample of size 3 is 

drawn without replacement from the box. What is the probability 
of obtaining 1 red ball and 2 white balls, given that at least 2 of the 
balls in the sample are white? 

 
 
2-5 Defective items on an assembly line occur independently with 

probability .05. A random sample of 100 items is taken. What is 
the probability that the first sampled item is not defective, given 
that at least 99 of the sampled items are not defective? 
 

 
2-6 Box I contains 3 red marbles and 2 blue marbles. Box II contains 3 

red marbles and 7 blue marbles. Box I is selected with probability 
2
3  and Box II is selected with probability 1

3 .  A box is selected and 
a red marble is drawn from the selected box. What is the probabili-
ty that Box I was selected? 

 
 
2-7 An insured population of individual drivers consists of 1500 youth-

ful drivers and 8500 adult drivers. The probability distribution of 
claims for individual insureds during a single policy year is as fol-
lows: 

 
Number of 

Claims 
Probability for 

Youth Adult 
0 .50 .80 
1 .30 .15 
2 .15 .05 
3 .05 .00 

 
 A particular policy has exactly 1 claim. What is the probability that 

the insured is a youthful driver? 
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2-8 A property-casualty insurance company issues automobile policies 
on a calendar year basis only. Let X be a random variable 
representing the number of accident claims reported during calen-
dar year 2005 on policies issued during calendar year 2005. Let Y 
be a random variable representing the total number of accident 
claims that will eventually be reported on policies issued during 
calendar year 2005. The probability that an individual accident 
claim on a 2005 policy is reported during calendar year 2005 is d. 
Assume that the reporting times of individual claims are mutually 
independent. Assume also that Y has the negative binomial distri-
bution, with fixed parameters r and p, given by 

 

   
1

[ ] (1 ) ,r yr y
P Y y p p

y
+ − 

= = − 
 

 (2.9) 

 
 for 0,1, .y =   Calculate [ | ],P Y y X x= =  the probability that the 

total number of claims reported on 2005 policies is y, given that x 
claims have been reported by the end of the calendar year. [Hint: 
The solution requires the use of Theorems 2.1 and 2.2, and the 

identity ( )( ) ( )( )1 1 ( ) ( ) 1 .r y r x r x y xy
x y x y x

+ − + − + + − −= −  In all, sub-

stantial algebraic manipulation is involved.] 
 
 
2-9 An insurer believes that the number of claims, Y, that will occur 

during calendar year 2005 is uniformly distributed over the set 
{2,3,4,5,6}, so that 

   .2 2,3,4,5,6[ ] .0 elsewhere
yP Y y == = 


 

 
 The insurer further believes that any claim occurring during the ca-

lendar year has a 50% chance of being reported before the end of the 
calendar year, and that the reporting of one claim does not influence 
the reporting of any other claims. Let X be a random variable 
representing the number of claims occurring during 2005 and re-
ported before the end of 2005. Calculate the values of 

[ | ],P Y y X x= =  for 0,1,...,6x = and , 1,...,6.y x x= +   
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2.3  Prior and Posterior Probabilities 
2.4  Conditional Expectation 
 
2-10 Let 1R and 2R  be stochastically independent random variables, 

each with probability density function ( ) ,xf x e−=  for 0.x ≥   

 Calculate 2 2
1 2 1 1| ,E R R R r + =   for 1 0.r >  

 
 
2-11 Let X and Y be stochastically independent random variables each 

with density function ( )f x  defined by 
 

   
0 0

( ) .25 0 .

.75 0x

x
f x x

e x−

<
= =
 >

 

 
 Calculate the expected value of 2 3,X Y+  given that 3X =  and 

0.Y >  
 
 
2-12 Let X and Y be discrete random variables with joint density func-

tion ( , )f x y  concentrated on the four corners of a unit square 
( )(0,0),(0,1),(1,0) and (1,1) .  Let ( , )f x y  be defined as follows: 

    
x y ( , )f x y  
0 0 .1 
0 1 .2 
1 0 .3 
1 1 .4 

 
 Calculate each of the following: 
 
 (a) [ ]| 1YE Y X =   
 (b)  [ ]| 0XE X Y =  
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2-13 Let X and Y be continuous random variables with joint density 
function 

   
26 3 , 0 1( , ) .

0 otherwise
xy x x yf x y

 + < < <= 


    

 Find [ ]| ,E X Y y=  for 0 1,y< <  via the following three steps: 
 (a) First determine ( ),f y  for 0 1.x y< < <  
 (b) Then determine ( | ),f x y  for 0 1.x y< < <  
 (c) Finally calculate [ | ].E X Y y=   
 

2-14 Using the results and notation of Exercise 2-9, calculate each of the 
following: 

 (a) The conditional expectation [ | 3],E Y X =  the total expected 
number of claims on 2005 policies that will be reported in 
2006 and beyond, given that 3 claims on such policies were 
reported during 2005. 

 (b) [ | 3] 3,E Y X = −  the expected number of claims reported after 
2005 on policies issued during 2005. 

 

2-15 Show that if X and Y are as defined in Exercise 2-8, then  
   (1 )(1 )

1 (1 )(1 )[ | ] ( ) ,d p
d pE Y X x x r x − −

− − −= = + + ⋅  

 for 0,1, .x =   This result can be restated as follows:  

 Given that x claims were reported on the 2005 book of business 
during calendar year 2005, then the expected number of claims that 
will eventually be reported on the 2005 book of business is 

(1 )(1 )
1 (1 )(1 )( ) ,d p

d px r x − −
− − −+ + ⋅  for 0,1, .x =   Alternatively, the ex-

pected number of claims that will be reported on the 2005 book of 
business in 2006 and beyond is ( )(1 )(1 )

1 (1 )(1 ) ,r x d p
d p

+ − −
− − −  for 0,1, .x =   

[Hint: The expected value of a random variable having a negative 
binomial distribution with parameters n and q is (1 ) .n q

q
−  The dis-

tribution of |Y X x=  is the same as that of ,U X+  where U has a 
negative binomial distribution with parameters n r x= + and 

1 (1 )(1 ).]q d p= − − −  
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2.5  Unconditional Expectation 

2-16 Let the discrete random variables X and Y be defined as in Exercise 
2-12. Calculate the unconditional expectation [ ].E X  

2-17 Let the continuous random variables X and Y be defined as in Ex-
ercise 2-13. 

(a) Show that the marginal probability density function of X is

2 33 3 6 0 1( ) .
0 otherwise

x x x xf x
 + − < <= 


 

(b) Calculate the unconditional expectation [ ].E X

2-18 Assume that the number of insurance claims, R, filed by an indi-
vidual in a single policy year has a binomial distribution with pa-
rameter for Θ  for 0,1,2,3.r =  Assume further that the parameter 
Θ  has density function 2( ) 6( ),g θ θ θ= −  for 0 1.θ< <  Determine 
the unconditional expectation [ ].E R  
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